
Mechanism of Sustained- Action Medication 
Theoretical Analysis of Rate of Release of Solid Drugs 

Dispersed in Solid Matrices 

By T. HIGUCHI 

Theoretically expected rates of release of solid drugs incorporated into solid matrices 
have been derived for several model systems. Mathematical relations have been ob- 
tained for cases (a) where the drug particles are dispersed in a homogeneous, uni- 
form matrix which acts as the diffusional medium and (b) where the drug particles 
are incorporated in an essentially granular matrix and released by the leaching action 
of the enetrating solvent. Release from both planar surface and a sphere is con- 
siderecf The unidimensional release rates are shown to follow our earlier equation 
derived for release from ointment bases. Release rates from spherical pellets by 
both model mechanisms are shown not to followfi rst-order relationships. The 
analyses suggest that for the latter system the time required to release 50 per cent of 
the drug would normally be expected to be approximately 10 per cent of that re- 
quired to dissolve the last trace of the solid drug phase in the center of the pellet. 

HE PRESENT COMMUNICATION is concerned 
Twith the results of a theoretical analysis of 
mathematical relationships governing the rate of 
release of solid drugs randomly dispersed in solid 
matrices. Systems of this type have been widely 
studied and utilized recently as bases for dosage 
forms which provide more or less continuous re- 
lease of medicaments over relatively long periods 
(I). Both Wiegand and Taylor (2) and Wagner 
(3) showed that per cent released time data 
reported in the literature for many sustained- 
release preparations give linear pseudo (or ap- 
parent) first-order rates over the terminal por- 
tions of the data from about 0.5 hour to the time 
the test was completed. The present study is an 
effort in relating the rate of release of drugs from 
such systems to the pertinent physical constants 
based on simple laws of diffusion. 

Two geometric systems have been considered: 
(a) unidirectional leaching or extraction from a 
simple planar surface, and (b) three dimensional 
leaching or extraction from a spherical pellet. 
This would correspond most closely to the release 
process from an insoluble tablet matrix or cer- 
tain sustained-action pellets. 

Two mechanisms of release from these systems 
have been treated. (a) Extraction of the 
medicament by a simple Wusional process 
through and from an enveloping, homogeneous 
matrix. The drug is presumed to go successively 
from the crystal swfaces into the uniform matrix 
and out into the bathing solvent which in turn 
acts as a perfect sink. (b) Leaching of the 
medicament by the bathing fluid which is able 
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to enter the  drug-matrix phase through pores, 
cracks, and intergranular spaces. The drug is 
presumed to  dissolve slowly into the permeating 
fluid phase and to diffuse from the system along 
the cracks and capillary channels filled with the 
extracting solvent. Intragranular diffusion is 
assumed, in this instance, to be insignificant. 
The two mechanisms are depicted schematically 
in Fig. 1. 

It should be explicitly pointed out that the 
analyses reported here relate to these particular 
model systems, whereas the analyses of Wiegand 
and Taylor (2) and of Wagner (3) related to re- 
lease data derived from formulated sustained- 
release or prolonged-action formulations. Actual 
dosage systems may be complicated by (a) 
simultaneous break-up of the matrix, (b) partial 
dissolution of the matrix substances, (c) one frac- 
tion of the dose being in a matrix form and the 
remainder of the dose being in a different, non- 
matrix and readily available form, and (d) drug 
on the surface being released more rapidly than 
drug in the matrix. Where suchcomplications are 
absent, the treatments under Theoretical Analysis 
are believed to yield the correct relationships. 

THEORETICAL ANALYSIS 

Release from a Hanar System Having a Homo- 
geneous Matrix.-The amount of total drug re- 
leased from such a system into a bathing medium 
acting essentially as a perfect sink would be deter- 
mined by the relationship 

Q = d D f ( 2 A  - C.)C, (Eq. 1) 
where Q = the amount of drug released after time 1 
per unit exposed area, D = the diffusitivity of the 
drug in the homogeneous matrix media, A = the 
total amount of drug present in the matrix per unit 
volume, and C, = the solubility of the drug i n  the 
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component, K being introduced to  convert .4 to  its 
corresponding volume fraction. K is equal to the 
specific volume of the drug = l/(density of the 
drug) if A is expressed in terms of grams of drug 
per milliliter. For those instances where the ini- 
tial porosity, to, is very snlall or where the frac- 
tion of the matrix volume occupied by the drug 
isrelatively large B 2 K A  and Eq. 2 reduces to 

Fig. 1.-Two methods of drug release from the 
pellets. 

matrix substance. We initially derived this equa- 
tion for release from an ointment base containing 
finely dispersed drugs ( 4 ) .  but it is evident that i t  
would be equally applicable for release from a sus- 
tained-action matrix of this type. 

Release from a Planar System Having a Granular 
Matrix.-For the leaching type release mechanism 
occurring through diffusion movement utilizing 
intergranular openings, the above relation must be 
modified for the effective volume where diffusion 
can occur and the effective diffusional path. I t  can 
readily be seen for this system that 

Q = 4" (-. 9 4  - eC,)C,t (Eq. 2 )  

where Q = the amount of drug released after time 
I per unit exposed area, D = the diffusitivity of the 
drug in the permeating fluid, I = the tortuosity 
factor of the capillary system G3, A = the total 
amount of drug present in the matrix per unit 
volume, C. = the solubility of the drug in the 
permeating fluid, and e = the porosity of the matrix. 

The derivation of the above expression is essen- 
tially the same as Eq. 1, except that the cross- 
sectional area of the diffusional path must be re- 
duced by the porosity factor t, and the apparent 
solubility of the drug in the total system per unit 
volume must also be decreased by the same factor. 
The tortuosity factor, r, is introduced to  correct, 
in the same sense used in the classical Kozeny 
equation, for the lengthened diffusional path caused 
by the necessary lateral excursions. 

For both equations the derivation ( 4 )  is based on 
the existence of a pseudo steady state condition 
during the release process and on the assumption 
that thedrug particles are quite small relative to the 
average distance of diffusion and are uniformly 
distributed in the matrix. The equations would be 
essentially valid for systems in which A is greater 
than C. or e C C  by a factor of three or four. Of 
course, if A <: C. or cC,, the drug would no longer be 
present as a solid and a different equation would 

Since the porosity factor in Eq. 2 refers, of course, 
to the porosity of the leached portion of the pellet, 
it differs from the initial porosity of the initially 
formed matrix. The difference would correspond 
directly to  the volume of free space previously 
occupied by the extracted component or components. 
Thus 

e = e. + KA 

for system where the drug is the only extractable 

apply. 

Q = A ~ D K / I ( ~  - KC.)C.t. Thusforthesesys- 

tems it would appear that the fraction of the drug 
released a t  anytime is essentially independent of 4 .  

Release from a Spherical Pellet Having a Homo- 
geneous Matrix.-Any attempt to  derive an exact 
solution for a systcm of this type is, of course, 

Fig. P.--Sche- 
matic diagram of 
drug distribution 
i n  a partly ex- 
tracted pellet. 

impossible since it would require an exact coordinate 
description of the distribution pattern of the dis- 
persed particles. A reasonably accurate and useful 
mathematical solution can be based on the same 
assumption which permitted solution of the two- 
dimensional system. We can again assume for the 
case A >> C, that a pseudo steady state condition 
would exist during the leaching or extraction process 
and that a sharp front will be formed between the 
partly leached or extracted part of the sphere and 
the untouched portion. This state of affairs is 
shown in Fig. 2 where a. = the radius of the whole 
pellet, a' = the radius of that part still unextracted, 
and a = the polar radius of any region under con- 
sideration, and the remaining symbols are the same 
as before. 

It is evident in such a system that the concentra- 
tion gradient is essentially zero for a < a'. The 
concentration in the region between a' and a. will 
be a function of a and is assumed to be that fixed by 
Fick's first law. 

Under pseudo steady state conditions as de- 
scribed above the total amount of material, SdQ, 
being released per unit time, dt ,  will be given by 
Fick's first law as 

where S is the diffusional area for a' S a 5 a,. 
Integrating this from a to  a, we obtain 

where C, = concentration at a or 

since C,  = C, a t  a = a '  and C ,  = 0 at a = a. and 
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of a' from Eq. 7 and then correlate the two dependent 
variables. 

A general solutioa to Eq. 11 can be obtained in 
this implicit manner. For this it is more convenient 
to transform Eq. 11 into a dimensionless relationship 

an expression which relates concentration to a 
in the region a' < a < ao. 

It is apparent that the total amount of the drug 
contained by the pellet at time = t is the sum of 
that in the unleached portion (a < a') and that in 
the region no longer saturated with the drug (a' < 
a < a,,). Or the total residual amount of drug 
equals 

a' (a0 - a )  da = f m ' 3  A + a (a ,  - a ' )  

a' 
a. - a' 

- - m ' 3  A + $ TC, - (ao3 - 3adZa'2 + 2a'3) 

= 4~ p; A + 2 c a' (aO2 + u'ao - 2a")] 
6 

The change in the residual drug concentration 
corresponding to  a change -da' would then be 

= 4~ p a f 2  + C (aO2 + 2 a'a, - 6 a'z)] 
6 

This should in turn be equal but opposite in sign 
to the total flux over the period involved 

2a'a. - 6a'2)] da' (Eq. 9) 

Integrating from ac to a' we obtain 

~ ( ~ " 3  + 2af3 - 3 ~ ~ 2 )  + 
C. 4at2a. + ao3 In - aus - a,za' - 2a13) = 

6DCp,t (Eq. 10) 
( 

For C, << A the above reduces to 

ao5 - + 2a'* = 6a. DC,t (Eq. 11) 

Equation 10 represents a general solution to the 
proposed problem since it permits determination of 
a' as a function of time, t. if the constants of the 
system, ao, A, C,, and D are known. Since the 
residual amount of drug a t  any time is already 
expressed by Eq. 7 in terms again of a', the total 
amount of drug released as a function of time can be 
readily calculated. Since any attempt to convert 
Eq. 10 into an explicit solution for u' as a function 
of t would result in a cumbersome relationship, it  is 
more feasible in practice to obtain t as a function of 
a' and the amount of release also as a function 

A 

In  this form the left hand expression in terms of 
a'/ao is dimensionless and is independent of any 
units of measure employed. The factor, B = 
6DCI/AaO2 is dimensionless except for time and can 
be calculated from the constants of the system. 
Since the fraction of drug remaining in the pellet for 
this system where A >> C, would be 

Residual fraction of drug in pellet = (3 
(Eq. 13) 

we can readily prepare a plot of the residual fraction 
remaining in the pellet as a function of relative time. 
Actual time unit can be substituted in real systems 
where the constants comprising B are determinable. 
The results are shown for different (a'/a,) values in 
Table I and are plotted in Fig. 3. It is evident 

TABLE I.-CALCULATION OF RELEASE RATE FROM 
SPHERICAL PELLET A >> Caa 

Drug Remaining 
-Time Scale- (%),in Pellet 

1.00 0.0000 100.0 
0.990 O.OOO30 97.03 
0.980 0.001184 94.12 
0.950 0.00725 85.70 
0.90 0.02800 72.90 

(3 BL (&) x 100 

0.80 0.1040 
0.70 0.2160 
0.60 0.3520 

51.20 
34.30 
21.60 

0.50 0.5000 12.90 
0.40 0.6480 
0.30 0.7840 
0.20 0.8960 
0.10 0.9720 
0.00 1.OOO 

6.40 
2.70 
0.800 
0.100 
0.000 

a Equation 11. 

rn 

Fig. 3.-Influence of a = C,/A values on rate of 
relerrse. 
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from the table that the physical significance of R is 
that for the case A >> C. its reciprocal corresponds 
to that time when the last trace of the solid drug 
dissolves into the matrix. Under these conditions 
the pellet can be considered to be totally exhausted. 
Also from the table it is apparent that the drug is 
very rapidly released at the beginning, approxi- 
mately 50% of it being released at  t = 0.1 X 1 /B .  

The values shown in Table I have been plotted 
in Fig. 3 in the usual semilogarithmic fashion to  
show that the release rate predicted by this mech- 
anism departs significantly from the first-order 
behavior. Aside from what appears to  be a large 
initial surge of release, however, the plot yields a 
surprisingly linear relationship over a relatively 
wide range. This seems to arise from the fact that 
it  is actually sigmoidal in nature and the apparent 
linear relationship observed (2, 3) may for some 
system be coincidental and for others be because of 
different overall mechanism. 

In Fig. 4 the fraction of drug released from a 
sphere calculated from Eq. 11 is compared to that 
expected from Eq. 1 on the basis that the total 
exposed surface is 4ra0*. The plot has been made 
as a function of (B1)1'2 since this affords a linear 
relationship for the two-dimensional system. It is 
evident that a t  the beginning the two equations 
predict a similar extent of release, as expected, since 
a plane of the same area would be a good approxima- 
tion for the sphere in this phase. It is only beyond 
50% release that significant deviation is evident 
between the two equations. 

The more general Eq. 10 which takes into account 
the amount of drug remaining in the partly extracted 
region can be solved in an identical manner based 
on Eqs. 7 and 10. Setting C. = a-4 and rearranging 
Eq. 10 we obtain 

1 + 2 ( 3 - 3 3 ) * +  

(3 - 11 = 
a ($)'+In a 4 - a' - - 2  

a a.  

or 

1 - a + 2 ( 1  - a )  (g)3 - (3 - 4a) (") *- 
a0 

Release behavior predicted by this equation for 
several values of a are also shown in Fig. 3. Resid- 
ual fraction in these instances based on Eq. 7 
would be 

Residual Fraction = 

(gy + 2 [(g) + (;)z - 2 (9'1 a. 

(Eq. 15) 

Since in  most real systems a is usually very small, 
any term containing it as a factor can normally be 
ignored. 

Plots shown in Fig. 3 are, in a sense, universal 
relationships in that they permit estimation of the 
release behavior for all systems for given a values. 
They indicate that the relative release rates ( i e . ,  
the  fraction released per unit time) from pellets of 
this type would be inversely proportional to the 

Fig. 4.-com- 
parison of Eqs. 
1 and 11. 

( B t  ) 1'2 

square of the radius of the pellet and the drug 
concentration but directly proportional to the 
solubility and the diffusitivity of the drug. The 
plot shown for a = 0.5 is less valid than the others 
since the assumed pseudo steady state condition 
requires A to be significantly larger than C,. Actu- 
ally a must be considerably smaller for the spherical 
three-dimensional system for the steady state situa- 
tion to exist than for the planar system. This is 
especially true for higher states of depletion. 

Release by Leaching from Granular Spherical 
Pellet.-The solution to the rate of leaching by 
external solvent (e.g., gastric fluid) of solid drugs 
uniformly dispersed in granular spherical pellets 
can be developed exactly as in the preceeding case. 
It is evident that the dimensionless expression 
corresponding to Eq. 11 will take the form 

(1 - a) + 2 (3 (1 - a )  - pJ2 (3 - 4a) - 

where a = eC./,4 and Q = e,, + KA, and the remain- 
ing symbols the same meanings as before with D 
being the diffusitivity in the solvent. If as in the two- 
dimensional case we take the initial porosity, co, 
as being negligible we obtain 

(1 - a) + 2 (3 (1 - a )  - 

6DKC.t 
7a02 

For a << 1, this reduces to 

where the residual fraction = (a'/a,)a. 
In  these analyses it has been tacitly assumed that  

the time of extraction begins with the slightly 
porous pellet already permeated by the extracting 
solution. Since in practice such pellets (or "cores") 
will be taken dry there will be a short lag time 
corresponding to that required to  wet the interior of 
the matrix. This t h e ,  however, should normally 
be relatively small compared to  the duration of 
action of such medications. 
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GENERAL DISCUSSION 
The several solutions to the release behavior of 

the systems considered are believed to  be essentially 
exact for the models employed. Experimental data 
available appear to substantiate these analyses (5). 

In  real systems, however, a number of other 
factors may come into play which may modify the 
total behavior. The models employed assume that 
the systems are neither surface coated, nor that their 
matrices undergo significant alteration in the 
presence of moisture. Since in real systems these 
play varying roles in modifying the release pattern 
of sustained-action dosage forms, any attempt to 
apply these equations must be made with this in 
mind. 

Other serious deviations from the derived relation- 

ship may occur for systems which tend to differ 
significantly from the adopted models. For ex- 
ample, for pellets containing a relatively high per- 
centage of drugs the leaching process would tend to  
weaken the matrix structure and produce erosion. 
This may play a significant role in altering the 
observed real rate. Another effect which is not 
considered in these treatments is the influence of 
solvent flow induced within the pellets by external 
agitation. This effect, however, will be important 
only with pellets of relatively high porosity. 

In Fig. 5 data reported by Simoons in his interest- 
ing paper on experimental measurements of release 
rate of sustained-action medication (6) for relatively 
insoluble drug hard compressed (his Fig. 15) are 
plotted in the form of square of fraction released 
against extraction time. The extraction data show 
a short lag time probably corresponding to that 
required to  wet the pellets. This is followed by a 
release pattern closely matching that predicted by 
Eq. 17, the smooth line representing the theoretical 
values and the points, the experimentally observed 
values reported by Simoons. The total theoretical 
curve was based on experimentally observed time for 
50% release and the initial lag time. 
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Dielectric Constants of Complex Pharmaceutical 
Solvent Systems I 

Water-Ethanol-Glycerin and Water-Ethanol-Propylene Glycol 

By D. L. SORBY, R. G. BITTER, and J. G. WEBB 

Dielectric constants of water-ethanol-glycerin and water-ethanol-propylene glycol 
systems have been experimentally determined. The measured values were found to 
differ from values calculated according to  simplification of the Onsager-Kirkwood 
equation, regardless of whether composition of the various solutions was expressed 
o n  the basis of weight percentage or volume percentage. Dielectric constant values 
presented in  this paper are recommended for  precise adjustment of solvent polarity 
in  formulation work and data are presented to be of maximum use in  this respect. 

OORE (1) HAS PRESENTED a method wherein 
manipulation of solvent dielectric constant 

is utilized t o  produce dissolution of a solute at 
a desired concentration and t o  blend pharmaceu- 
tical solvents t o  a predetermined degree of 
polarity. In this method, certain simplifying 
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assumptions are made, one being that the dielec- 
tric constant of a complex solvent mixture may 
be calculated t o  a good approximation by  taking 
the sum of the products of volume composition 
and dielectric constant for each individual com- 
ponent in the mixture. This method of calculat- 
ing dielectric constants of complex mixtures is 
based on a simplification of the Onsager-Kirkwood 


